Guid Essay

Guid Essay

Determination of the Focal Length of a Convex Lens

AIM: To determine the focal length of converging lens and it’s radius of curvature.

HYPOTHESIS: The relationship between u and v and the focal length f for a convex lens is given by . Where f is the focal length, u is the distance between the object and the lens v is the distance between the image and the lens. Real and Virtual Images: Lenses produce images by refraction that are said to be either real or virtual.

  • Real images are created by the convergence of rays and can be projected onto a screen; real images form on the side of the lens that is opposite to the object and by convention have a positive image distance value;
  • Virtual images are formed by the apparent extrapolation of diverging rays and cannot be formed on a screen, whereas virtual images form on the same side of the lens as the object and have a negative image distance value.[1]

C:UsersmohdsaleemDesktopFOUCS OF LENS.JPG[2]

BACKGROUND: For a thin double convex lens,refractionacts to focus all parallel rays to a point referred to as the principal focal point. The distance from the lens to that point is the principal focal length f of the lens. Below is the derivation of the lens formula

Following graphic illustrates a simple lens model:

Elevating Essay Writing: Delivering Excellence and Literary Distinction

Crafting Essays that Leave a Lasting Impression

In the realm of academic expression, where words have the power to shape ideas and inspire minds, we stand as a beacon of excellence. As dedicated essayists, we take immense pride in our ability to weave words into captivating narratives, enlightening arguments, and thought-provoking analyses. Our journey as essay writers has been one of continuous growth and meaningful impact. Let’s explore some remarkable instances where our expertise has made a significant difference.

Guiding Students Towards Success

Our journey is intertwined with the success stories of numerous students who sought our guidance. In one instance, a struggling undergraduate approached us with an intricate topic in the field of sociology. Through meticulous research and a nuanced understanding of the subject, we formulated an essay that not only secured the student’s academic standing but also ignited their passion for social sciences.

Similarly, a graduate student grappling with the complexities of literary criticism found solace in our expertise. We delved into the depths of literary theory, dissecting texts and exploring nuanced interpretations. The resulting essay not only garnered accolades but also instilled a newfound confidence in the student’s analytical abilities.

Breathing Life into Topics: Examples of Our Endeavors

  1. The Intersection of Technology and Society: In an era dominated by technological advancements, we embarked on an essay that explored the intricate relationship between technology and society. By seamlessly blending sociological insights with technological trends, we created an essay that resonated with readers across disciplines.

  2. Environmental Ethics and Sustainability: With environmental concerns taking center stage, we took on the challenge of crafting an essay that delved into the ethical dimensions of sustainability. Through rigorous research, we presented a compelling argument that not only addressed the urgency of the issue but also proposed actionable solutions.

  3. Literary Analysis: Unraveling Symbolism: Literary works often conceal layers of symbolism. In an essay dedicated to the works of a renowned author, we unraveled the subtle threads of symbolism woven into the narrative. This essay not only celebrated the author’s craftsmanship but also offered readers a deeper appreciation for the written word.

A Tapestry of Literary Accolades

Our dedication to the art of essay writing has not gone unnoticed. Over the years, we have had the privilege of being recognized in esteemed literary competitions that celebrate creativity and intellectual prowess. These accolades serve as a testament to our commitment to delivering essays that transcend the ordinary and venture into the extraordinary.

Literary Award Highlights

  1. Eloquent Prose Prize: Awarded by the Prestigious Wordsmith Guild, this accolade celebrated our mastery over language and the art of storytelling. The essay that earned us this honor explored the nuanced emotions of human existence through a compelling narrative.

  2. Critical Thinker’s Commendation: Presented by the Symposium of Intellectual Thought, this award acknowledged our prowess in critical analysis. Our essay, dissecting the philosophical underpinnings of existentialism, showcased our ability to navigate complex ideologies with finesse.

  3. Literary Luminary Award: Conferred by the Literary Confluence, this award celebrated our contribution to literary discourse. The winning essay, an exploration of the intersection between culture and identity, captured the essence of diverse human experiences.

Conclusion: Pioneering Excellence in Essay Writing

As we reflect on our journey as essayists, we are filled with a profound sense of purpose. Our dedication to delivering exceptional essays that enlighten, engage, and inspire remains unwavering. Through intricate narratives, incisive analyses, and unwavering commitment to the written word, we have carved a niche for ourselves in the realm of academic and literary excellence. Join us as we continue to shape ideas, foster growth, and transcend boundaries through the power of the written essay.

http://siddhantahuja.files.wordpress.com/2009/12/lens-law.png?w=510&h=291[3]

where,

h= height of the object

h’= height of the object projected in an image

G and C = focal points

f= focal distance

u= Distance between the object and the focal point

O= Centre of the lens

v= Distance between the centre of the lens and image plane

Assumptions

  1. Lens is very thin
  2. Optical axis is perpendicular to image plane

Proving is true.

Proof

In ΔAHO,

In ΔEDO,

—– (1)

In ΔBOC,

In ΔEDC,

—— (2)

Equating equations (1) and (2),

Dividing both sides by v,

Hence the formula is proved.

VARIABLES:

Independent: Distance between the candle and the lens

Dependent: Distance (v) from the image to the lens

Control:

  • This experiment was conducted in an almost dark room.
  • Same sheet of paper used as the screen.
  • A stable candle flame
  • The time taken for a sharp and focused image to settle
  • The size of the candle.

METHOD FOR CONTROLLING VARIABLES: Made sure that the room was sufficiently dark enough to carry out this experiment as smoothly as possible without any entrance of light from the outside. So I pulled down the blinds of the windows and also made sure that there was no draught present in the room that can make the candle flame unstable. Moreover, I waited for around 6-7 seconds for the image to be seen as sharp and focused. And throughout this experiment I used candles of the same make and size.

APPARATUS REQUIRED:

  • 2 meter rules
  • A white screen
  • Candle
  • Convex lens

PROCEDURE:

I divided this experiment in to 2 parts, A and B. In part A, I experimented using a single lens at a time, while in part B, I used 2 lens in contact at a time.

Part A:

  1. Firstly I set up the apparatus as shown in Figure 1 above by making the distances v and u the same. So the image observed on a plain white screen was focused and clear
  2. Recorded the value of the lengths u and v and thereby marking these original points using a chalk on the bench.
  3. Then I adjusted the length of u by moving it away from the lens by 5cm. Consequently, I adjusted the length of v until a sharp and focused image was seen.
  4. Recorded this distance of u and v
  5. Repeated step 3 – 4 for 7 different values of u by increasing the distance by 5 cm in each step. And recorded the values of u and v for every increment.
  6. Then I placed the candle and the screen back in their original marked positions.
  7. Finally, repeated the steps 1-8 by using different convex lenses A, B, C, D and E.

Figure 1: Setup of the apparatus for Part A

Part B:

  1. Firstly I set up the apparatus as shown in Figure 2 by making the distances v and u the same. So the image observed on a plain white screen was focused and clear
  2. Recorded the value of the lengths u and v and thereby marking these original points using a chalk on the bench.
  3. Then I adjusted the length of u by moving it away from the lens by 5cm. Consequently, I adjusted the length of v until a sharp and focused image was seen. Recorded this distance of u and v
  4. Repeated step 3 – 4 for 4 different values of u by increasing the distance by 5 cm in each step. And recorded the values of u and v for every increment.
  5. Repeated the above steps 1-5, thrice.

Figure 2: Setup of the apparatus for Part B

DATA COLLECTION AND PROCESSING:

Table 1: Data collected for convex lens A

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

25.1

20.0

21.5

25.0

17.0

30.0

14.7

35.0

14.2

40.0

13.6

45.0

13.0

Table 2: Data collected for convex lens B

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

28.9

20.0

24.2

25.0

19.2

30.0

15.8

35.0

13.9

40.0

13.2

45.0

12.7

Table 3: Data collected for convex lens C

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

24.6

20.0

21.1

25.0

16.5

30.0

14.3

35.0

13.9

40.0

13.4

45.0

12.9

Table 4: Data collected for convex lens D

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

28.7

20.0

23.6

25.0

17.4

30.0

14.9

35.0

14.0

40.0

13.4

45.0

13.0

Table 5: Data collected for convex lens E

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

25.8

20.0

20.1

25.0

15.4

30.0

14.3

35.0

13.9

40.0

13.1

45.0

12.5

Table 6: Data collected for Trial 1

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

30.0

60

40.0

38

50.0

33

60.0

30.1

Table 7: Data collected for Trial 2

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

30.0

58.7

40.0

37.8

50.0

32.6

60.0

30

Table 8: Data collected for Trial 3

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

30.0

61.5

40.0

38.7

50.0

33.2

60.0

29.6

Using the formula, R = 2f I can calculate the value for the radius of curvature. The value of f can be found using the equation.

Table 9:Data processing for convex lens A

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

25.1

9.39

18.78

-0.62

0.38603

20

21.5

10.36

20.72

0.35

0.12328

25

17.0

10.12

20.24

0.11

0.01182

30

14.7

9.87

19.73

-0.14

0.02090

35

14.2

10.10

20.20

0.09

0.00833

40

13.6

10.15

20.30

0.14

0.01930

45

13.0

10.09

20.17

0.08

0.00576

   

Mean(f) = 10.01

   

Standard deviation: δm = = = 0.30967

Therefore, the focal length is 10.01+ 0.31 cm

The % error = = 3.1%

Table 10:Data processing for convex lens B

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

28.9

9.87

19.75

-0.38

0.14761

20

24.2

10.95

21.90

0.69

0.47792

25

19.2

10.86

21.72

0.60

0.36098

30

15.8

10.35

20.70

0.09

0.00818

35

13.9

9.95

19.90

-0.31

0.09612

40

13.2

9.92

19.85

-0.33

0.11162

45

12.7

9.90

19.81

-0.35

0.12548

   

Mean(f) =

10.26

   

Standard deviation: δm = = = 0.47044

Therefore, the focal length is 10.26+ 0.47 cm

The % error = = 4.6%

Table 11:Data processing for convex lens C

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

24.6

9.32

18.64

-0.57

0.32564

20

21.1

10.27

20.54

0.38

0.14350

25

16.5

9.94

19.88

0.05

0.00259

30

14.3

9.68

19.37

-0.20

0.04197

35

13.9

9.95

19.90

0.06

0.00361

40

13.4

10.04

20.07

0.15

0.02209

45

12.9

10.03

20.05

0.14

0.01879

   

Mean(f) = 9.89

   

Standard deviation: δm = = = 0.30500

Therefore, the focal length is 9.89+ 0.31 cm

The % error = = 3.1%

Table 12:Data processing for convex lens D

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

28.7

9.85

19.70

-0.29

0.08633

20

23.6

10.83

21.65

0.68

0.46324

25

17.4

10.26

20.52

0.11

0.01308

30

14.9

9.96

19.91

-0.19

0.03595

35

14.0

10.00

20.00

-0.15

0.02105

40

13.4

10.04

20.07

-0.11

0.01158

45

13.0

10.09

20.17

-0.06

0.00346

   

Mean(f) = 10.15

   

Standard deviation: δm = = = 0.32524

Therefore, the focal length is 10.15+ 0.33 cm

The % error = = 3.2%

Table 13:Data processing for convex lens E

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

25.8

9.49

18.97

-0.28

0.07574

20

20.1

10.02

20.05

0.26

0.06992

25

15.4

9.53

19.06

-0.23

0.05327

30

14.3

9.68

19.37

-0.08

0.00586

35

13.9

9.95

19.90

0.19

0.03548

40

13.1

9.87

19.74

0.11

0.01159

45

12.5

9.78

19.57

0.02

0.00049

   

Mean(f) = 9.76

   

Standard deviation: δm = = = 0.20508

Therefore, the focal length is 9.76 + 0.20508 cm

The % error = = 2.1%

Table 14: Data processing for Trial 1

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

30

60.0

20.00

40.00

0.15

0.02168

40

38.0

19.49

38.97

-0.37

0.13366

50

33.0

19.88

39.76

0.03

0.00072

60

30.1

20.04

40.09

0.19

0.03672

   

Mean(f) = 19.85

   

Standard deviation: δm = = = 0.43905

Therefore, the focal length is 19.85 + 0.44cm

The % error = = 2.2%

Table 15: Data processing for Trial 2

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

30

58.7

19.85

39.71

0.10

0.00961

40

37.8

19.43

38.87

-0.32

0.10300

50

32.6

19.73

39.47

-0.02

0.00047

60

30.0

20.00

40.00

0.24

0.05984

   

Mean(f) = 19.76

   

Standard deviation: δm = = = 0.16976

Therefore, the focal length is 19.76 + 0.17 cm

The % error = = 0.9%

Table 16: Data processing for Trial 3

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

30

61.5

20.16

40.33

0.26

0.06875

40

38.7

19.67

39.34

-0.23

0.05387

50

33.2

19.95

39.90

0.05

0.00252

60

29.6

19.82

39.64

-0.08

0.00645

   

Mean(f) = 19.90

   

Standard deviation: δm = = = 0.14809

Therefore, the focal length is 19.90 + 0.15 cm

The % error = = 2.2%

CALCULATIONS AND DATA PRESENTATION:

Table 17: Data presentation for Convex lens A

 

Click to rate this entry!
(Votos: 0 Promedio: 0)

Contact

We will be happy to help you and inform you about any questions.

WE ARE IN CONTACT WITH YOU

Leave a Comment